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Abstract We study the limit of systems of interacting particles, when the number of parti-
cle becomes very large. The support of the interaction vanishes as the number of particles
goes to infinity, so that the natural limit is just free transport, but no limitation is assumed
about the strength of the interaction. We obtain explicit estimates for the number of particles
effectively interacting and describe the way they do it.
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1 Introduction

We study the dynamics of many interacting particles in the limit of an infinite number of
particles. The force acting on each particle is a sum of pair-wise interaction with the other
particles. The kind of dynamics that is expected at the limit depends on the scaling of the
force term with respect to the number of particles N . Here we consider very short range
interaction in the sense that the force between two particles vanishes if their distance is
larger than R with, in dimension 3

NR2 � 1.

In this scaling the formal limit is simply free transport: each particle moves with its initial
velocity. Indeed a formal computation easily shows that on average a particle should never
undergo a collision: i.e. the number of particles coming at a distance less than R to another
is negligible in front of N , in a time interval of order 1.

This is a simplified problem for the more interesting case NR2 = const where the ob-
tention of collisional models (of Boltzmann type) is conjectured. The first rigorous step in
that direction was obtained by Lanford in a celebrated work [10] (see also [11]). This result
nevertheless suffers from two important restrictions: first the particles are hard spheres (they
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interact with the potential �(x) = +∞ if |x| ≤ R and � = 0 if |x| > R). And second the
limit is only valid for a time small with respect to the average time it takes for one particle
to have a collision (or the mean free path after rescaling).

This second restriction was improved by Cercignani, Illner and Pulvirenti in [3] (see
also [8]); the time interval of validity was still finite and of the order of the mean free path
though. Both results deal with hard spheres although extensions to repulsive potentials are
mentioned (see [11]) but unpublished (as far as we know).

Those results are easily extended to our scaling. The limitation on the time interval is
no more a real issue as the mean free path tends to infinity. However the proofs would still
require hard spheres interaction (or at least a repulsive potential). Note that in the case of
an arbitrary potential, the velocity bounds needed to substantiate the intuition behind the
formal scaling argument are not easy to prove; in addition, the very concept of collision
needs a careful definition. As a consequence, we do not know how to generalize Lanford’s
results to a general potential, even in the shorter range scaling considered here.

We start with Proposition 2.4 which justifies the free transport limit, still only for repul-
sive potentials. The interest is mainly in the simplicity of the proof as the result is not really
new (although strictly speaking never stated before for a potential with so little regularity).

The main result is Theorem 2.5. It unfortunately deals with an even shorter range
R � N−3/5 but it assumes virtually nothing on the potential (it does not need to be re-
pulsive and its scale could be as large as one wants) and therefore it is not at all included in
previous contributions. Moreover we not only prove the free transport limit but also describe
all possible collision sequences between particles and the result is consequently much more
precise. The core of the proof is to ensure that the build up of correlations between particles
does not destroy the validity of simple scaling arguments. Theorem 2.5 leaves open the ques-
tion of a non trivial limit in the range N−1/2 � R < N−3/5 (for which we have no particular
clue to offer). The particles velocities could then become unbounded and the limit would not
necessarily be free transport (as the probability of interacting with another particle would
increase accordingly).

Finally and for the sake of completeness, let us mention that the limit dynamic is also an
important and fertile field of study in the case of long range potentials (and obviously with
a weaker scaling). Vlasov-like kinetic equations are then expected. The first rigorous results
were obtained by Braun and Hepp [2], Neunzert and Wick [12] and Dobrushin [4], and con-
cern very regular interaction potentials. We also refer to Spohn [15] where the Wasserstein
distance is used to obtain the convergence. Two references related to numerical simulations
with particles’ methods are for instance Victory and Allen [16] and Wollman [17]. All these
works require a regular interaction kernel (at least continuous and usually even lipschitz).
Much less is known concerning irregular interactions: the convergence to the Euler equation
of point vortex systems is well controlled [5, 13, 14], see also [9], and recently, Hauray and
Jabin [7] proved the convergence of a particle approximation to the Vlasov equation for a
class of weakly singular potentials. However, the physical potentials of interest are typically
the much more singular Coulombian and gravitational interactions, for which no conver-
gence results to the Vlasov equation are known. This difficulty to deal with the short range
singularity of potentials in the Vlasov limit was also an incentive for the study of this paper:
what happens for a general singular potential in a short range scaling.

2 Setting and Statement of the Results

We study the perturbation of the free transport of N point particles by a very short range
(but strong) interaction potential. Denote respectively by Xi(t) ∈ R

3 and by Vi(t) ∈ R
3 the
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position and velocity at time t of the particle number i. The X’s and V ’s are governed by
the following equations of motion:

Ẋi = Vi,

V̇i = 1

SN

∑

j �=i

Kε(Xi − Xj), i = 1, . . . ,N,
(2.1)

where SN is a scaling factor. SN = N is the usual Vlasov scaling; in the following, SN will
be N or 1. Kε(x) is compactly supported in the ball of radius εk but singular. It is assumed
to be derived from a potential

Kε = −∇x�ε, Kε(−x) = −Kε(x). (2.2)

This is not strictly necessary and could be replaced by a weaker assumption on the com-
pressibility and energy bounds for the corresponding flow but is generally satisfied by the
physical kernels we would wish to use (with some exceptions).

The parameter ε is directly connected to the number of particles, being the average dis-
tance in the phase space between two particles or

ε = N−1/6.

The initial conditions X0
i and V 0

i are typically random although very large values should
be avoided. For simplicity we will consider initial values I = (X0

1,V
0

1 , . . . ,X0
N,V 0

N) in the
hypercube I ∈ [−1,1]6N . In the following, the measure of a set A will always mean the
Lebesgue measure, and be denoted by |A|.

Our aim is to compare this dynamics to the unperturbed one, which is simply given by

dX̄i

dt
= Vi,

dV̄i

dt
= 0, i = 1, . . . ,N. (2.3)

If SN = N , this is therefore a kind of mean field limit (but in a weak form) for which
much is known provided Kε is regular enough. Here we only assume the minimal regularity
necessary to ensure that the system (2.1) is well defined, that is (see Ambrosio [1] or Hauray
for the particular case considered here [6])

Kε ∈ BV (R3), suppKε ⊂ B(0, εk). (2.4)

Note that in addition any other assumption ensuring well posedness of (2.1) for a given N

would be enough.
Let us first give some definitions.

Definition 2.1 Two particles are said to collide iff

∃t s.t. |Xi(t) − Xj(t)| ≤ εk. (2.5)

Let us note that we have no information on the duration of a collision; unless otherwise
stated, the “time of a collision” is to be understood in the following as the beginning time of
the collision, that is the smallest time t such that |Xi(t) − Xj(t)| ≤ εk .

Definition 2.2 We denote by iRT j the relation “i and j collide before time T ”.
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Definition 2.3 A sequence of collisions is an orbit of the relation RT .

An easy formal computation tells us that the average number of particles having a colli-
sion should be of order N2ε2k . This number is large (if k < 6) but nevertheless small with
respect to N if k > 3. If this can be rigorously justified, we would therefore obtain, at the
limit N → ∞, the dynamics (2.3) for almost all particles. As all particles are identical, prov-
ing this is equivalent to controlling the set of initial conditions for which a chosen particle
(the first one for example) has a collision, or

Proposition 2.4 Take SN = N . Assume that �ε ≥ 0 and |�ε| ≤ C/|x|. For any 6 > k > 3
(such that Nε2k << 1), fix a time T , N large enough and consider (2.1) until time T . Then
the set of initial data I for which the first particle has at least one collision is of measure
less than CNε2k .

Remark

The two big restrictions are the conditions that the potential be repulsive and that SN = N . At
first glance and formally, it would seem that they should not be necessary. They are however
needed to control the velocities of the particles, in the cases of collisions involving 3 or
more particles. Contrary to the case of Theorem 2.5 below, here 3-particles collision (or
more) can and will typically occur. And notice that the formal computation predicting that
only N2ε2k particles will undergo a collision, only holds if the velocities of the particles
remain of order 1.

This proposition is enough to obtain the limit but it does not describe at all what happens
to the particles which have collisions (except that they do not interact with too many other
particles) or in the case of attractive (or non repulsive) potentials. If k is large enough, it
is possible to be more specific in the sense that two particles may collide only once and
a sequence of collisions is exactly that: collisions happening one after the other without
overlapping. To be that specific it is unfortunately necessary to exclude the possibility of
3-particles collision. This is automatic for hard spheres, but is requires a more stringent
condition if general potentials are included, namely k > 18/5.

More precisely

Theorem 2.5 Take SN = 1 and any k > 3 (such that Nε2k � 1). Fix a time T , N large
enough and consider (2.1) until time T . Then, there exists a large set O ⊂ [−1,1]6N with

|[−1,1]6N \ O| ≤ CT N3ε5k,

such that for all I ∈ O , we have the following

(i) All collisions involve only two particles; that is:

∀i, j, l, ∀t < T , |Xi(t) − Xj(t)| > εk or |Xi(t) − Xl(t)| > εk.

This allows us to define the number of collisions in a given sequence.
(ii) Two particles belonging to the same sequence at a certain time t < T do not collide

again before time T .
(iii) Define On as the subset of O containing the initial data for which there are at least one

sequence with exactly n collisions in the dynamics. Then

|On| ≤ CT,nN
n+1ε2kn.
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Remarks

(1) Point (ii) may be formulated more precisely: consider a collision sequence, and two
indices i and j in this sequence undergoing an actual collision, that is iRT j . Consider
now the relation RT,ij , defined as the relation RT excluding iRT j , and define Ai and Aj

the orbits of i and j under RT,ij . Then Ai ∩ Aj = ∅. This amounts to say that particles
correlated in some way by belonging to the same collision sequence do not collide again.

(2) The theorem is interesting only for k such that N3ε5k ≤ 1 and n large enough such that
we have Nn+1ε2kn < 1. Note that for k > 3, there is always a n such that the above
quantity vanishes to 0 with N (remember that Nε6 = 1). The first condition however
implies that k ≥ 18/5.

Let us stress that those two results leave open all the range of cases 3 < k < 18/5 for
general potentials. Of course the assumptions on the potential in Theorem 2.5 are very weak
(Kε could even blow up with N ) but we do not know how to proceed even with a precise
scaling (SN = N for instance).

We have stated Proposition 2.4 and Theorem 2.5 for a fixed time T = O(1). As a final
remark, let us note that Proposition 2.4 remains valid for an N -dependent time scale T as
long as T � Nk/3−1; the same is true for Theorem 2.5 as long as T � N5/6(k−kc), with
kc = 18/5. These extensions are easy consequences of the proofs.

3 Proof of Proposition 2.4

We first need some control on the maximal number of interacting particles.
Denote by B0 the set of initial data such that any two particles i and j satisfy initially

that

|Xi(0) − Xj(0)| > 1

N
.

Clearly, as there is no dynamics yet

|[−1,1]6N \ B0| ≤ 1

N
. (3.1)

We define a K-collision between two particles i and j if there exists t such that |Xi(t) −
Xj(t)| ≤ Kεk .

Denote now by BK
n the subset of B0 of initial conditions such that there is no sequence

of K-collisions involving n + 1 particles or more before time T and by OK
n = B0 \ BK

n . We
will first prove that

|OK
n | ≤ Cn,KNn+1ε2kn. (3.2)

We start with a control on the velocity

Lemma 3.1 For K ≥ 1, I ∈ BK
n , any i = 1, . . . ,N and any t ∈ [0, T ], then we have that

|Vi(t)| ≤ 1 + Cn.
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Proof As I ∈ BK
n with K ≥ 1, the particle i interacts with at most n other particles

j1, . . . , jn. Denote j0 = i. As �ε ≤ 0, we hence obtain by energy conservation that

n∑

k=0

|Vjk (t)|2 ≤
n∑

k=0

|Vjk (0)|2 + 1

N

∑

0≤k �=m≤n

�ε(Xjk (0) − Xjm(0)).

Recalling that I ∈ B0, we know that |Xjk (0) − Xjm(0)| > 1/N and as |�ε| ≤ C/|x|, we
deduce that

n∑

k=0

|Vjk (t)|2 ≤ 1 + n + Cn2,

hence the result. �

Let us now prove by induction the estimate on |OK
n |. The initial step and the n → n + 1

step are very similar so we do only the second one. Assume therefore that

|OK
n | ≤ Cn,KNn+1ε2kn,

and consider a initial data I ∈ OK
n+1. Necessarily there exists j1, . . . , jn+1 and a time t0 < T

such that before t0 there was no sequence of K-collisions involving more than n+1 particles
and at t0 at least another particle, denoted by i, starts a K-collision with one of the jk .

Notice that there could be more than one particle having a collision at t0, in which case
we just choose anyone of them. Moreover the particle i may have had collisions with another
set of particles before t0 but with none of the jk .

Divide the time interval [0, T ] into M ≤ C(1 + n)T ε−k small intervals [tα, tα+1] of size
less than εk/2(1 + Cn).

Through Lemma 3.1, we know that until time t0, the velocity of every particle is less than
1 + Cn. Therefore choosing tα = max{tβ |tβ < t0}, we know that at tα , Xi(tα) is at a distance
less than (1+K)εk from one of the j1, . . . , jn+1. For the same reason, as j1, . . . , jn+1 form a
sequence of K-collisions before t0, they also form a sequence of K + 1-collisions before tα .

Consequently denote by OK
n (i, j1, . . . , jn+1, α) the set of initial data I ∈ B0 such that

j1, . . . , jn+1 form a sequence of K + 1-collisions before tα , i has no K-collision with any of
the jk before tα and for some k = 1, . . . , n + 1, |Xi(tα) − Xjk (tα)| ≤ (K + 1)εk .

Controlling the measure of this set is easy because there is no interaction between parti-
cles j1, . . . , jn+1 and the other particles. Choose first Xj1(0), Vj1(0), . . . ,Xjn+1(0), Vjn+1(0).
The trajectory of the jk particles is then determined. The measure of the set of initial values
Xk(0), Vk(0), k �= j1, . . . , jn+1 is then less than the measure of the set of initial condition
such that at a given time Xi is in a given ball of radius (K + 1)εk . By Galilean invariance,
this is less than

C(K + 1)3ε3k.

Finally the measure of the set of Xj1(0), Vj1(0), . . . ,Xjn+1(0), Vjn+1(0) such that they form
a sequence of K + 1-collisions before tα is simply

Cn,K+1ε
2nk.

Indeed from the induction assumption for the previous step n (but with K + 1 instead of K),
the measure of the set of initial data such that n + 1 particles form a sequence of K + 1-
collisions is less than

Cn,K+1N
n+1ε2nk.
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As this set is invariant under permutations on the indices of the particles (and as the measure
of the set for which two sequences of collisions occur is trivially much lower), we obtain the
claimed bound.

Finally

|OK
n (i, j1, . . . , jn+1, α)| ≤ CCn,K+1(K + 1)3ε(2n+3)k.

As

OK
n+1 ⊂

N⋃

i,j1,...,jn=1

M⋃

α=1

OK
n (i, j1, . . . , jn+1, α),

we obtain that

|OK
n+1| ≤ Nn+2MCCn,K+1(K + 1)3ε2(n+1)k+1 ≤ Cn+1,KNn+2ε2(n+1)k,

with

Cn+1,K = CCn,K+1(K + 1)3(1 + n)T .

This proves (3.2).
With (3.2), it is quite straightforward to show Proposition 2.4. Indeed choose n large

enough such that

Nn+1ε2kn ≤ Nε2k.

It is enough to take n(k/3 − 1) ≥ k/3 so that n does not depend on N . Denote by D1 the set
of initial data such that the first particle has a collision before time T . Denote D̃1 = D1 ∩B1

n .
Controlling D̃1 is enough as

|[−1,1]2N \ B1
n | ≤ |[−1,1]2N \ B0| + |B0 ∩ O1

n | ≤
1

N
+ Cn,T Nn+1ε2kn

≤ CT Nε2k,

as k < 6 and n is from now on fixed.
For any I ∈ D̃1, there exists t0 such that the first particle has no collision until t0 and

a collision occurs with another particle i �= 1 (possibly more than 1) at t0. As I ∈ B1
n , all

velocities are bounded by 1 + Cn. Consequently if we again divide [0, T ] into M intervals
[tα, tα+1] with M ≤ C(1 + n)T ε−k , and if we choose tα = max{tβ < t0} then |X1(tα) −
Xi(tα)| ≤ 2εk .

Denote by D̃1(i, α) the subset of B1
n such that the first particle has no collision before tα

and |X1(tα) − Xi(tα)| ≤ 2εk . We have that

D̃1 ⊂
N⋃

i=1

M⋃

α=1

D̃1(i, α).

As until tα the trajectory of the first particle is a line, it is obvious that

|D̃1(i, α)| ≤ Cε3k,

so that

|D̃1| ≤ CNMε3k = CNε2k,

which finishes the proof of Proposition 2.4.
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4 Proof of Theorem 2.5

The theorem is proved in two steps. First assuming point (i) and (ii) are known, we prove
(iii). We end up with the proof for points (i) and (ii).

4.1 Proof of Point (iii) Knowing (i) and (ii)

In this subsection we assume we have a set O such that for any I ∈ O , (i) and (ii) of
Theorem 2.5 are true.

Proposition 4.1 Let I ∈ O and A be a sequence with n collisions. Then card(A) = n + 1.

Proof We argue by induction. For n = 1, card(A) = 2, since one collision involves two, and
only two, particles.
We suppose now that the property is true for all m < n. Let i and j be the two particles
involved in the last collision of the sequence A. As above, we define Ai and Aj the collision
sequences of i and j when the collision between i and j is excluded. Then, using Point (ii)
of Theorem 2.5, Ai ∩ Aj = ∅, so that card(A) = card(Ai) + card(Aj ). Now, Ai and Aj are
sequences with respectively m and n − 1 − m collisions. Using the induction hypothesis,
we get

card(A) = m + 1 + (n − 1 − m + 1) = n + 1.

The proof is completed. �

Let us now study On the subset of O such that for I in On the dynamics has at least one
sequence with exactly n collisions. Then

Proposition 4.2 Let n + 1 particles follow the equations of motion:

{
Ẋi = Vi

V̇i = 1
N

∑n+1
j=1,j �=i Kε(Xi − Xj)

}
. (4.1)

We denote by ωn the measure in R
6(n+1) of the initial conditions such that the n + 1

particles belong to the same sequence. Then |On| ≤ Cn+1
N |ωn|.

Proof The argument is very simple. Consider the n + 1 particles composing the sequence
with n collisions in On. There are Cn+1

N possible choices of indices for those particles but
once they are chosen they follow exactly (4.1). Indeed as they belong to a sequence with
exactly n collisions, they do not come within εk of any other particle.

Their initial positions and velocities therefore belong to ωn hence the result. �

We may now concentrate on the evaluation of |ωn|. The heuristics behind the next propo-
sition is the following: two particles collide at a given time if they are inside a volume of
order ε3k ; otherwise stated, the measure of initial conditions leading to collision at a given
time is of order ε3k , since measure is preserved by the flow. Now, the measure of initial
conditions leading to collision at any time is of order ε2k . The following proposition states
that all collisions in a sequence of n brings one such factor ε2k .
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Proposition 4.3 Under the same hypothesis as for Proposition 4.2,

|ωn| ≤ an,T ε2nk. (4.2)

Point (iii) of Theorem 2.5 immediately follows from this proposition and the previ-
ous one.

Three lemmas are necessary for the proof of Proposition 4.3

Lemma 4.4 Take I ∈ O . Let i be a particle belonging to a sequence of n collisions. Then
whenever i is not colliding with another particle, |Vi | ≤

√
n + 1.

Proof Energy conservation during a collision between i and j implies that

|V ′
i |2 + |V ′

j |2 = |Vi |2 + |Vj |2,
where the primes refer to quantities after collision. This equality is valid when the collision
is over. Initially, |Vi |2 ≤ 1 for all i. Thus after one collision, |Vi |2 ≤ 2 for all i, which proves
the property for n = 1.

We assume that the property is true for all m < n and argue by induction.
Consider now any collision in the sequence, involving particles i and j ; we call mi and

mj the number of particles involved in the collision sequences of i and j before the consid-
ered collision. Then mi + mj ≤ n − 1. After the collision

|V ′
i |2 ≤ |Vi |2 + |Vj |2

≤ mi + 1 + mj + 1

≤ n + 1,

using the induction hypothesis. �

Lemma 4.5 Take I ∈ O . Let i be a particle belonging to a sequence of m collisions. Then
during a time interval [T1, T2], i travels a distance smaller than

√
m + 1(T2 − T1) + mεk .

Proof When i is not colliding, its velocity is bounded by
√

m + 1, thanks to Lemma 4.4.
When i is colliding with another particle j , it’s not possible to bound its velocity, but

its position Xi can be controlled by tracking G, the center of mass of particles i and j :
the velocity of the center of mass VG is bounded by

√
m + 1, and during the collision,

|Xi(t) − XG(t)| ≤ εk/2. Thus for a collision lasting τ , particle i travels at most a distance
τ
√

m + 1 + εk . Finally, adding the effects of at most m collisions, particle i between T1 and
T2 travels at most

√
m + 1(T2 − T1) + mεk . �

Lemma 4.6 Let � be a bounded region in R
6. Consider the dynamics of n + 1 particles

given by (4.1). We denote by p
i,�
n,T the measure in R

6(n+1) of the initial conditions such that
the n + 1 particles belong to the same sequence, and at time T , (Xi(T ),Vi(T )) ∈ �. Then
p

i,�
n,T ≤ |ωn||�|.

Proof This is an easy consequence of the Galilean invariance of the dynamics. In other
words if Xj,Vj , j = 1, . . . , n + 1, satisfy (4.1) and belong to the same sequence then for
any x, v ∈ R

3, Xj + x + vt,Vj + v satisfy again (4.1) and belong to the same sequence. �
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Proof of Proposition 4.3 We divide the time interval [0, T ] in M small intervals of size
	t = εk/(2

√
n + 1), and consider the times tl = lεk/(2

√
n + 1), with l an integer. Then

M = [2T
√

n + 1ε−k] + 1 ≤ 3T
√

n + 1ε−k,

for ε small enough. Then if particles i and j collide, there exists l such that

|Xi(tl) − Xj(tl)| ≤ (n + 2)εk

This is a direct consequence of Lemma 4.5.
We call Iij,l the set of initial conditions such that: n collisions happen; l is the smallest

integer such that |Xi(tl) − Xj(tl)| ≤ (n + 2)εk ; the last collision occurs between particles i

and j . “Last” means here that at time tl , all collisions of the sequence, except perhaps the
i − j one, have started and may be completed.

We now argue by induction.

Case n = 1 There are only two particles involved, 1 and 2, so that

ωn ⊂ ∪lI12,l .

Now, owing to the conservation of the measure by the flow, we may evaluate the measure
of I12,l by evaluating the measure of its image by the flow at any time. We choose the time
tl . At this time X1, V1 and V2 are undetermined, and X2 belongs to the ball centered in X1,
with radius 3εk . Thus |I12,l | = 36πε3k . From here, we write

|ωn| ≤
M∑

l=1

36πε3k ≤ 108T
√

3ε2k.

This proves the n = 1 case.

We now assume that the property is true for all m < n.

Then we have

|ωn| ≤
∑

i,j,l

|Iij,l|.

We evaluate the measure of Iij,l by examining the situation at t = tl , using again mea-
sure conservation. We call Ai = {i, i1, . . . , im} and Aj = {j, j1, . . . , jn−1−m} the collision
sequences to which i and j respectively belong before the i − j collision. Ai and Aj are
two disjoints sets thanks to point (ii) of Theorem 2.5. We call I (i)

m the set of initial conditions
on {i, i1, . . . , im} such that the collision sequence Ai happens; at time tl , particle i is at a cer-
tain position Xi(tl) = X0. We call I

(j),X0
n−1−m the set of initial conditions on {j, j1, . . . , jn−1−m}

such that the collisions of sequence Aj happens and particle j is at tl in the ball centered in
X0, of radius (n + 2)εk ; using Lemma 4.6 with � = B(X0,2εk) × R

3, we know that

|I (j),X0
n−1−m| ≤ |ωn−1−m|4(n + 2)3π

3
ε3k.

We then evaluate the measure of Iij,l by

|Iij,l| ≤
n−1∑

m=0

Cm
n−1|I (i)

m ||I (j),X0
n−1−m|
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≤ C

n−1∑

m=0

Cm
n−1 |ωm||ωn−1−m|ε3k

≤ C

n−1∑

m=0

Cm
n−1aman−1−mε3k+2k(n−1).

The last inequality uses the induction assumption. Finally, we have

|ωn| ≤
n∑

i,j=1

M∑

l=1

n−1∑

m=0

Cm
n−1aman−1−mε3k+2k(n−1)

≤ cT
√

n + 1ε−kn2
n−1∑

m=0

Cm
n−1aman−1−mε3k+2k(n−1)

≤ anε
2kn,

with

an = cT
√

n + 1n2
n−1∑

m=0

Cm
n−1aman−1−m. (4.3)

Notice that the expression for an is far from optimal and that better bounds could be ob-
tained, this is however enough to complete the proof. �

4.2 Proof of Points (i) and (ii) of Theorem 2.5

Let us first note that both (i) and (ii) are true for T = 0: (ii) obviously there cannot be
recollisions as there is no dynamic; (i) as the set of initial data for which at least three
particles are in the same ball of radius εk has measure less than CN3ε6k .

Therefore for any I ∈ O with |[−1,1]2N \O| ≤ CN3ε6k , points (i) and (ii) hold at time 0.
Now fix T > 0, and denote by B the set of initial conditions I such that either (i) or (ii)

are not true until time T . We will show that

|B| ≤ CT N3ε5k.

For any I ∈ B , there exists t0 > 0 such that (i) and (ii) are true until t0 and one of them (or
both) false at t0 (t0 depends on I ). This is because both are true at time 0 and because the
dynamics is continuous in time.

Notice that all results of Sect. 4.1 are true until t0. As k > 3, there exists n independent
of N such that asymptotically in N

Nn+1ε2kn ≤ N3ε5k.

Therefore, it is enough to consider B̃ = B \ On as |On| ≤ CT N3ε5k and for any I ∈ B̃ there
are at most n − 1 collisions in the dynamics for any sequence of collisions.

In fact we can be a bit more precise and notice that Theorem 2.5 is useless and trivial
when N3ε5k is not less than 1. Recalling that ε = N−1/6 this implies that it is enough to
consider k ≥ 18/5. Consequently, n = 5 and there are at most 4 collisions (in any sequence)
in the dynamics we consider.
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We have to study both cases where (i) (respectively (ii)) is contradicted at time t0. Denote
by B̃1 ⊂ B̃ the set of initial conditions I ∈ B̃ such that there exist t0 ≤ T and three particles
i, j, k with Xi(t0), Xj(t0) and Xk(t0) in the same ball of size 2εk . Clearly B̃1 contains all
initial conditions of B̃ contradicting (i) but is a bit larger (which will be useful for (ii)).

Accordingly denote by B̃2 the set of initial conditions I ∈ B̃ \ B̃1 for which there exists
t0, and i and j such that for some t < t0, iRtj and i and j collide at t0 with t0 the beginning
of the collision; which means that |Xi(t0) − Xj(t0)| = εk and |Xi(t) − Xj(t)| > εk for any
t < t0 but close enough from t0. B̃2 contains all initial conditions contradicting (ii) before (i)
and of course B̃ = B̃1 ∪ B̃2.

4.2.1 Case of B̃1: (i) Is Contradicted First

Denote by B̃1(t1) the set of initial conditions I such that I ∈ B̃1 and at t1 we have three
particles located in the same ball of size 3εk . As there are C3

N possibilities of choosing those
three particles, the measure of the set of X1(t1),V1(t1), . . . ,XN(t1),VN(t1) such that three
particles are located in the same ball of size 3εk at t1 is less than

CN3ε6k.

Therefore, since the dynamics preserves volume in the whole phase space, the set B̃1(t1) has
measure less than CN3ε6k .

We divide the time interval [0, T ] into M intervals [Tα,Tα+1], α = 0, . . . ,M , of size
εk(n + 1)−1/2. If three particles are located in a ball of radius εk at t0, Lemma 4.5 ensures
that they are still within a ball of radius 6εk at some well chosen time Tα . We have also used
that there at most 4 collisions in any sequence before t0. So

B̃1 =
M⋃

α=1

B̃1(Tα),

and as M is less than T ε−k
√

n + 1, we finally obtained that

|B̃1| ≤
M∑

α=1

|B̃1(Tα)| ≤ CMN3ε6k ≤ CT N3ε5k, (4.4)

which is the desired estimate on B̃1.

4.2.2 Case of B̃2: (ii) Is Contradicted First

Let us first perform the same subdivision of the time interval [0, T ] in M intervals [Tα,Tα+1]
of size εk(n + 1)−1/2 as in the previous paragraph. As the same bound on the velocities
applies, we may again assume that t0 is one of the Tα in the following sense:

Lemma 4.7 There exist i, j, α such that iRTα j , and εk < |Xi(Tα) − Xj(Tα)| ≤ 2εk .

Proof We use the definition of B̃2 and take α such that Tα = supβ{Tβ < t0}. Neither i nor
j may have any collision with another particle between Tα and t0. Indeed, suppose the last
collision of i between Tα and t0 is with particle k, and ends at t1. Between t1 and t0, the
velocities of i and j are bounded by

√
n + 1 thanks to Lemma 4.4. Thus, at t1 i, j and k
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would be in a ball of size 2εk and the initial condition would belong to B̃1 and thus not B̃2.
Note now that since the trajectories of i and j are lines between two collisions, they cannot
cross more than once. This implies that i and j do not collide between Tα and t0. Thus,
applying the velocity bound of Lemma 4.4, we have εk < |Xi(Tα) − Xj(Tα)| ≤ 2εk and
iRTα j (remember that iRt0j ). �

Lemma 4.8 For any β ≥ 1 and any two points xi and xf in [−1 − 2T ,1 + 2T ]3, denote by
S(xi, xf ,β) the set of initial conditions X1(0), X2(0), V1(0), V2(0) in [−1−2T ,1+2T ]6 ×
[−2,2]6 such that

(i) X1(0) ∈ B(xi,2εk),
(ii) the two particles 1 and 2 have a collision between time 0 and Tβ (and no collision with

any other particles), and
(iii) X1(Tβ) ∈ B(xf ,2εk) or X2(Tβ) ∈ B(xf ,2εk).

Then

|S(xi, xf ,β)| ≤ C
ε6k

β2
.

Note that as the particles have no collision with other particles, the dynamics really in-
volves only them, which is why S contains only the initial conditions for those two particles.

Proof The dynamics to consider is simply

Ẋ1(t) = X1(t), Ẋ2(t) = V2(t),

V̇1(t) = 1

N
Kε(X1 − X2), V̇2 = 1

N
Kε(X2 − X1).

Let us consider Sj (xi, xf , β) for j = 1,2 the subset of S(xi, xf ,β) for which Xj(Tβ) ∈
B(xf ,2εk) (i.e. (iii) is true for Xj ). The set S is the union of S1 and S2 and it is obviously
enough to prove the estimate for those subsets.

Now denote by S̃j (xi, xf , β) the set of initial conditions X1(0), X2(0), V1(0), V2(0) in
[−1 − 2T ,1 + 2T ]6 × [−3,3]6 such that again conditions (i)–(iii) of (4.8) are satisfied with
Xj(Tβ) ∈ B(xf ,2εk). The only difference between S̃j and Sj is that S̃j allows for a larger
support in velocity initially.

For any fixed xf and V with |V | ≤ 1, we have that

Sj (xi, xf , β) + (0,0,V ,V ) ⊂ S̃j (xi, xf + V Tβ).

This is indeed only Galilean invariance: if we add V to the velocities of each particle initially,
then they follow the same dynamics with the same V added to their velocities and V t added
to their position. Hence the final position Xj(Tβ) is simply shifted by V Tβ .

As a consequence for any xf and any y ∈ B(xf ,Tβ), we have that

|S̃j (xi, y,β)| ≥ |Sj (xi, xf , β)|.
Take L points yn in the ball B(xf ,Tβ) such that the distance between any two of them is at
least 4εk . Then clearly

S̃j (xi, y
n,β) ∩ S̃j (xi, y

p,β) = ∅, if n �= p,
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Fig. 1 An example of collision
sequence when particle i has no
collision between Tβ and Tα ; the
collision sequence of particles j

and q may be more complicated
than what is sketched here, in the
limit of four or less collisions
before Tα

as the final position Xj(Tβ) cannot be in both B(yn,2εk) and B(yp,2εk). Obviously there
are at most L = Cβ3 such points yn (remember that Tβ is of the order of βεk).

On the other hand U = ⋃L

n=1 S̃j (xi, y
n,β) contains only those initial data such that

X1(0) ∈ B(xi,2εk) and 1 and 2 have a collision between time 0 and Tβ . Therefore its mea-
sure is at most Cβε6k . Consequently

L × |Sj (xi, xf , β)| ≤
L∑

n=1

|S̃j (xi, y
n,β)| =

∣∣∣∣∣

L⋃

n=1

S̃j (xi, y
n,β)

∣∣∣∣∣ ≤ Cβε6k.

So finally, we obtain that

|Sj (xi, xf , β)| ≤ C
ε6kβ

L
= C

ε6k

β2
. �

As i and j belong to the same sequence before Tα , there exist two particles p and q (one
or both of which could be i or j ) colliding at some time t1 < Tα (t1 being here the final time
of the collision) and such that p and i belong to the same sequence between t1 and Tα and
so do respectively q and j .

One of these sequences of collisions contains at least one collision: If not i and j would
have one collision at t1, another one at t0 and none in between, which was already excluded.

On the other hand, one also has at most one collision. Indeed there are at most four
collisions before Tα and one already occurred at t1 so there are only three remaining. This is
too few to have at least two other collisions for each sequence.

Define Tβ as the smallest of the Tγ bigger than t1. p and q have at most 3 collisions
between t1 and Tβ , and the

√
n + 1 velocity bound applies between the collision, so that

|Xp(Tβ) − Xq(Tβ)| ≤ 6εk,

and we may replace t1 by Tβ .
Now assume that the sequence with p and i between tβ and Tα is the one with the less

collisions (and hence 0 or 1). Let us consider both cases

No collision for i in [Tβ,Tα] That means that i = p. Accordingly we know that j �= q . Let
us denote by B̃1

2 the set of initial data such that this occurs and estimate its measure. Figure 1
gives an example of collision sequence corresponding to this case.

In order to do so, we bound the set of positions and velocities at time Tβ and use Liou-
ville’s theorem to deduce a bound on B̃1

2 . Therefore denote by C1(β) the set of corresponding
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Fig. 2 An example of collision
sequence when particle i has one
collision between Tβ and Tα ; the
collision sequence of particles j

and q may be more complicated
than what is sketched here, in the
limit of four or less collisions
before Tα

positions and velocities st time Tβ Xn(Tβ),Vn(Tβ), 1 ≤ n ≤ N . We have that

|B̃1
2 | ≤

∑

β

|C1(β)|.

First choose Xn(Tβ), Vn(Tβ) for any n �= i such that j and q belong to the same sequence
of collisions between Tβ and Tα (of any number of collisions); Denote by C(j, q, i, β,α) the
corresponding set. The positions and velocities of all particles except i are known between
Tβ and Tα , as i does not interact with any of them within this time interval.

Once this is done, we must choose Xi(Tβ) in the ball B(Xq(Tβ), εk) and as its trajectory
is a line, Vi(Tβ) must lie in the ball centered at (Xj (Tα) − Xi(Tβ))/(Tα − Tβ), and of radius
εk/(Tα −Tβ)). Therefore the set of corresponding Xi(Tβ) and Vi(Tβ) is of measure less than
Cε3k(α − β)−3. Moreover

|C1(β)| ≤
∑

i,j,q

∑

α

∫

C(j,q,i,β,α)

∫

Xi∈B(Xq ,εk)

×
∫

(Tα−Tβ )Vi∈B((Xj (Tα)−Xi),ε
k)

dVidXidX1dV1 . . . dXNdVN

≤ C
∑

i,j,q

∑

α

ε6k(Tα − Tβ)−3|C(j, q, i, β,α)|.

The last step is to evaluate the measure of C(j, q, i, β,α). As there is at least one collision
between Tβ and Tα , say between particles k and l, there exists γ ∈ [β,α] such that k and
l are in the same ball of size 2εk . Evaluating the measure of C(j, q, i, β,α) by its image
by the flow at time Tγ , and summing over all possible γ , we obtain that |C(j, q, i, β,α)| ≤
Cε3k(α − β). Finally, we conclude:

|C1(β)| ≤ CN3ε6k,

and

|B̃1
2 | ≤

∑

β

|C1(β)| ≤ CN3ε5k,

which is the desired estimate.

One collision for i in [Tβ,Tα] That means that p = i or p = l. Figure 2 gives an example
of collision sequence corresponding to this case.
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We follow the same steps as in the previous lemma, and denote by B̃2
2 the corresponding

set of initial conditions and C2(β) the set of Xn(Tβ), Vn(Tβ).
As before we first choose Xn(Tβ), Vn(Tβ) for n �= i, l in the set C(j, q, i, l, β,α), which

is such that j and q belong to the same sequence of collisions between Tβ and Tα . This set
is almost exactly C(j, q, i, β,α) except that particle l is not included.

Then it remains to choose Xi(Tβ), Vi(Tβ), Xl(Tβ) and Vl(Tβ) such that i and l have a
collision between Tβ and Tα , Xi(Tα) belongs to B(Xj(Tα,2εk) and Xi(Tβ) or Xl(Tβ) belong
to B(Xq(Tβ),2εk). This is the set S(Xq(β),Xj (α),α − β) of Lemma 4.8, with the roles of
xi and xf exchanged. As the dynamics is reversible, Lemma 4.8 applies. So

|C2(β)| ≤
∑

i,j,q

∑

α

∫

C(j,q,i,l,β,α)

∫

S(Xq ,Xj (β),α−β)

dVidXidVldXldX1dV1 . . . dXNdVN

≤ C
∑

i,j,q,l

∑

α

ε6k(α − β)−2|C(j, q, i, lβ,α)|,

according to Lemma 4.8. The estimate for |C(j, q, i, l, β,α)| being the same as before, one
obtains

|B̃2
2 | ≤ C

∑

α>β

∑

i,j,q,l

ε9k(α − β)−1 ≤ CN4ε8k| ln ε|,

which is asymptotically less than N3ε5k as Nε3k| ln ε| converges to 0 (N = ε−6 and k > 3).
Finally this does imply that

|B̃2| ≤ |B̃1
2 | + |B̃2

2 | ≤ CN3ε5k.
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